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This work presents a further development of the distance transformation technique for accurate

evaluation of the nearly singular integrals arising in the 2D boundary element method (BEM). The

traditional technique separates the nearly hypersingular integral into two parts: a near strong singular

part and a nearly hypersingular part. The near strong singular part with the one-ordered distance

transformation is evaluated by the standard Gaussian quadrature and the nearly hypersingular part still

needs to be transformed into an analytical form. In this paper, the distance transformation is performed

by four steps in case the source point coincides with the projection point or five steps otherwise. For

each step, new transformation is proposed based on the approximate distance function, so that all steps

can finally be unified into a uniform formation. With the new formulation, the nearly hypersingular

integral can be dealt with directly and the near singularity separation and the cumbersome analytical

deductions related to a specific fundamental solution are avoided. Numerical examples and compar-

isons with the existing methods on straight line elements and curved elements demonstrate that our

method is accurate and effective.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Near singularities are involved in many boundary element
method (BEM) analyses of engineering problems, such as the thin
and shell-like problems [1–3,6], the crack problems [7], the
contact problems [8], as well as the sensitivity problems [9].
Accurate and efficient evaluation of nearly singular integrals is
crucial for successful implementation of BEM analyses. A near
singularity arises in BEM when a source point is close to but not
on the integration elements. Although those integrals are really
regular in nature, they cannot be evaluated accurately by the
standard Gaussian quadrature. This is the so-called boundary
layer effect in BEM. The boundary layer effect comes from the
properties of fundamental solutions and their derivatives. The
denominator, the distance between the source and the field point,
is close to zero but not zero. The difficulty encountered in the
numerical evaluation mainly results from the fact that the
integrands of nearly singular integrals vary drastically with the
distance.

Effective computation of nearly singular integrals has received
intensive attention in recent years. Various numerical techniques
have been developed to remove the near singularities, such as
ll rights reserved.

).
rigid body displacement solutions [10], global regularization
[4,5,11–14], semi-analytical or analytical integral formulas [15,16],
the sinh transformation [17–19], polynomial transformation [20],
adaptive subdivision method [21–23], distance transformation tech-
nique [24–27], the L�ð1=5Þ

1 transformation [28] and the PART
method [29]. Most of them benefit from the strategies for computing
singular integrals. Among those techniques, the distance transforma-
tion technique seems to be a more promising method for dealing
with different orders of nearly singular integrals. However, the
traditional technique separates the nearly hypersingular integral into
two parts with the aid of an introduced term having the similar
hypersingular properties: a near strong singular part and a near
hypersingular part. The near strong singular part with the one-
ordered distance transformation can be evaluated by the standard
Gaussian quadrature and the near hypersingular part still needs to be
transformed into an analytical form. This is because the two distance
transformations in Refs. [24–27] for the nearly hypersingular integral
are not effective.

To cope with the above problems, a number of new transfor-
mations are introduced based on the approximate distance
function to deal with the nearly hypersingular integral directly.
Hence, the near singularity separation and the cumbersome
formula deductions of the near hypersingular part in Refs. [24–27]
are no longer required. We first take four steps to analyze the
transformation when the distance between the source point and
the projection point equals zero, and five steps otherwise. In each
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step, the mathematical derivation is presented in detail. Then
these steps are unified into a uniform formation, in which the
near singularity separation and the cumbersome formula deduc-
tions can be avoid. It should be pointed out that we use the
approximate distance but the exact distance in actual computa-
tion. Our method has been successfully applied in the evaluation
of nearly singular integrals on straight line elements and curved
elements. Numerical examples are presented for different cases
regarding positions of the projection point and values of the
minimum distance. Results demonstrate that our method is
accurate and effective.

This paper is organized as follows. The general form of nearly
singular integrals is described in Section 2. Section 3 briefly
reviews the distance function. The distance transformations for
near strong singular integrals are briefly reviewed in Section 4.
In Section 5 the transformations for nearly hypersingular integrals
are presented. Numerical examples are given in Section 6. The
paper ends with conclusions in Section 7.
2. General descriptions

In this paper, we will deal with the computation of integrals of
the following form:

I¼

Z
G

f ðx,yÞ

rl
dG, l¼ 1,2, r¼ :x�y:2 ð1Þ

where f is the smooth function, x and y represent the field point
and the source point in BEM, respectively. G represents the
boundary element. We assume that the source point is close to
G, but not on it. In local intrinsic coordinate system, xA[�1,1], the
integrals of Eq. (1) can be transformed into the following forms:Z
G

f ðx,yÞ

r
dG¼

Z 1

�1

f ðxÞ
r

fðxÞGðxÞdx ð2aÞ

Z
G

f ðx,yÞ

r2
dG¼

Z 1

�1

f ðxÞ
r2

fðxÞGðxÞdx ð2bÞ

where f(x) represents one of the shape functions, and G(x) is the
Jacobian of the transformation from dG to dx. f(x), f(x) and G(x)
are all the smooth functions.

Gaussians: expð�cr2Þ, c40

Multiquadrics: ðc2þr2Þ
�ðb=2Þ, ca0
3. Review definition of the distance function

In this section, we will briefly review the distance function
[24–27].

As shown in Fig. 1, employing the first-order Taylor expansion
in the neighborhood of the projection point, we have

xk�yk ¼ xk�xc
kþxc

k�yk ¼
@xk

@x

����
x ¼ c

ðx�cÞþr0nkðcÞþOð9x�c92
Þ ð3Þ

where r0 is the minimum distance from the source point y to the
Γ

Ω r0

r

x
n

xc

t

y•

•

•

Fig. 1. The minimum distance r0, from the source point to the 2D curved boundary

element.
boundary element which is defined as the length of yxc ; t is the
tangential line; xc is the projection point and c is the local
coordinate (see Fig. 1).

So the distance can be expanded to the following form:

r2ðxÞ ¼ ðxk�ykÞðxk�ykÞ

¼ r2
0þ

@xk

@x
@xk

@x x ¼ c
ðx�cÞ2þ2r0

@xk

@x x ¼ c
nkðcÞðx�cÞþOð9x�c93

Þ

����
����

¼ r2
0þG2

c ðx�cÞ2þGctkðcÞnkðcÞðx�cÞþOð9x�c93
Þ

¼ G2
c g2ðxÞþOð9x�c93

Þ ð4Þ

where Gc is the Jacobian at c; nk is the component of the outward
normal and g(x) is the distance function defined as

gðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þðx�cÞ2

q
ð5Þ

where a¼ r0=Gc

Consequently r can be expressed as

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

c g2ðxÞ
q

ð6Þ
4. Variable transformations for near strong singular integrals

In this section, we review the distance transformation techni-
que for near strong singularity with order 1/r. There are two
transformations considering the following two cases, namely
r0a0 and r0¼0.

Case 1: r0a0:
The following transformation pairs for the integration vari-

ables are given in Refs. [24–29] as

ZðxÞ ¼ log½gðxÞþðx�cÞ� ð7Þ

xðZÞ ¼ 1

2
ðeZ�a2e�ZÞþc ð8Þ

When 9c9o1, the integration span is split into two parts at point
c. There is no need for this operation for the case 9c9Z1.
Substituting Eq. (8) into Eq. (2a) yieldsZ
G

f ðx,yÞ

r
dG¼

Z 1

�1

f ðxÞ
r

fðxÞGðxÞdx

¼

Z c

�1

f ½xðZÞ�
r

f xðZÞ
� �

G xðZÞ
� �

g xðZÞ
� �

dZ

þ

Z 1

c

f ½xðZÞ�
r

f xðZÞ
� �

G xðZÞ
� �

g xðZÞ
� �

dZ ð9Þ

Case 2: r0¼0:
The following transformation for the integration variables has

also been introduced in Refs. [27,28] as

xðZÞ ¼ eZþc, ðco�1Þ

xðZÞ ¼ c�eZ, ðc41Þ

(
ð10Þ

Using Eqs. (8) and (10), we can remove the near singularity with
order 1/r completely. The effectiveness for both transformations
has also been verified by numerical examples in Refs. [24–29].
5. New variable transformations for nearly
hypersingular integrals

In this section, we construct efficient variable transformations
to compute nearly hypersingular integrals for different cases.
Refs. [24–27] have given a transformation to remove this type
near singularity completely in mathematical form, but the
numerical results of the transformation are proved poorly. So
it is time to developed new efficient transformations. Those
transformations are based on the idea that the integrands with



G. Xie et al. / Engineering Analysis with Boundary Elements 35 (2011) 811–817 813
the rapid variation are smoothed out and their integrals can be
calculated precisely by the standard Gaussian quadrature. We will
use different transformations for the following three cases: (1)
r0a0 and 9c9Z1; (2) r0¼0 and 9c9Z1; (3) r0a0 and 9c9o1.

5.1. Case 1: r0a0 and 9c9Z1

When r0a0 and 9c9Z1, we will give different transformations
considering the two ranges of c, namely cr�1 and cZ1. In order
to obtain a reasonable transformation for each case, the distance r

is approximated by the Taylor expansion (4) without considering
higher order term as Eq. (6). However, in actual computation r is
still the distance from the source point to the field point. Taking
the case cr�1 as an example, we explain how to construct
different transformations. The process consists of five steps and
each step is described briefly below.

Using Eqs. (6) and (2b) can be written as

I¼

Z 1

�1

f ðxÞ
r2

fðxÞGðxÞdx¼
Z 1

�1

f ðxÞ
G2

c g2ðxÞ
fðxÞGðxÞdx

¼

Z 1

�1

f ðxÞ
G2

c ða2þðx�cÞ2Þ
fðxÞGðxÞdx ð11Þ

First we make a translation transformation for the integration
variable as follows:

x1 ¼ x�c ð12Þ

Substituting Eq. (12) into (11) we have

I¼

Z 1

�1

f ðxÞ
r2

fðxÞGðxÞdx¼
Z 1�c

�1�c

f ðx1þcÞ

G2
c g2ðx1þcÞ

fðx1þcÞGðx1þcÞdx1

¼

Z 1�c

�1�c

f ðx1þcÞ

ðr2
0þG2

cx1
2
Þ
fðx1þcÞGðx1þcÞdx1 ð13Þ

Second we make a stretching transformation

x1 ¼ r0x2 ð14Þ

Eq. (13) becomes the following form:

I1 ¼

Z ðð1�cÞ=r0Þ

ð�ð1þ cÞ=r0Þ

r0f ðr0x2þcÞ

ðr2
0þG2

c r2
0x2

2
Þ
fðr0x2þcÞGðr0x2þcÞdx2 ð15Þ

In the third steps we make a translation transformation again

x3 ¼ x2þ1 ð16Þ

This step is employed to adjust the lower limit of the integration
variable for the afterward logarithmic transformation.

Substituting Eq. (16) into Eq. (15), results in

I¼

Z ðð1�cÞ=r0Þþ1

ð�ð1þ cÞ=r0Þþ1

r0f ½r0ðx3�1Þþc�

ðr2
0þG2

c r2
0 ðx3�1Þ2Þ

fðr0ðx3�1ÞþcÞGðr0ðx3�1ÞþcÞdx3

ð17Þ

In the fourth steps, we smooth out the rapid variations of the
integrand by the following logarithmic transformation:

x4 ¼ logðx3Þ ð18Þ

Eq. (17) can be expressed as

I¼

Z logðð1�cÞ=r0Þþ1

logð�ðð1þ cÞ=r0Þþ1Þ

r0ex4 f ½r0ðe
x4�1Þþc�

ðr2
0þG2

c r2
0ðe

x4�1Þ2Þ

�fðr0ðe
x4�1ÞþcÞGðr0ðe

x4�1ÞþcÞdx4 ð19Þ

Using the good properties of the logarithmic function [24–30], it
can easily be proved that the transformed integrand has much
lower gradient.

Finally, adjusting the integration interval within [�1,1] for
performing the standard Gaussian quadrature directly, we pro-
pose the following transformation:

x4 ¼ k1Zþk2 ð20Þ
where

k1 ¼ 0:5 log 1�c
r0
þ1

� �
�log �1�c

r0
þ1

� �� �
k2 ¼ 0:5 log 1�c

r0
þ1

� �
þ log �1�c

r0
þ1

� �� �
8><
>: ð21Þ

Using the transformation (20), we have

I¼

Z 1

�1

k1r0ek1Zþk2 f ðr0ðe
k1Zþk2�1ÞþcÞ

ðr2
0þG2

c r2
0ðe

k1Zþk2�1Þ2Þ

�fðr0ðe
k1Zþk2�1ÞþcÞGðr0ðe

k1Zþk2�1ÞþcÞdZ ð22Þ

We integrate all the transformations detailed above and can
obtain the final transformation as

x¼ cþr0ðe
ðk1Zþk2Þ�1Þ ð23Þ

Using Eq. (23), the integral of Eq. (2b) can be expressed as follows:

I¼

Z 1

�1

k1r0ek1Zþk2 f ðr0ðe
k1Zþk2�1ÞþcÞ

r2

�fðr0ðe
k1Zþk2�1ÞþcÞGðr0ðe

k1Zþk2�1ÞþcÞdZ ð24Þ

It should be noted that we still use the exact r instead of the
approximate r in Eq. (24) and the nearly singular kernels are not
changed into another forms.

For the case cZ1, in a similar manner, we can easily obtain
another new transformation as follows:

x¼ c�r0ðe
ðk1Zþk2Þ�1Þ ð25Þ

where k1 and k2 are different from those in Eq. (21), both values
are obtained using the following equations:

k1 ¼ 0:5 log 1þ c
r0
þ1

� �
�log c�1

r0
þ1

� �� �
k2 ¼ 0:5 log 1þ c

r0
þ1

� �
þ log c�1

r0
þ1

� �� �
8><
>: ð26Þ

Using Eq. (25), the integral of Eq. (2b) for this case can be
expressed as follows:

I¼

Z 1

�1

k1r0ek1Zþk2 f ðc�r0ðe
k1Zþk2�1ÞÞ

r2

�fðc�r0ðe
k1Zþk2�1ÞÞGðc�r0ðe

k1Zþk2�1ÞÞdZ ð27Þ
5.2. Case 2: r0¼0 and 9c9Z1

When r0¼0 and 9c941, the process of constructing variable
transformations is different from that described in Section 5.1.
We also deduce corresponding transformations for the two cases,
namely cr�1 and cZ1. Taking the case cr�1 as an example,
the process consisting of four steps is described briefly below.

Using Eqs. (6) and (2b) can be transformed into the following
form:

I¼

Z 1

�1

f ðxÞ
r2

fðxÞGðxÞdx¼
Z 1

�1

f ðxÞ
G2

c g2ðxÞ
fðxÞGðxÞdx

¼

Z 1

�1

f ðxÞ
G2

c ðx�cÞ2
fðxÞGðxÞdx ð28Þ

First we still make a translation transformation

x1 ¼ x�c ð29Þ

Eq. (28) becomes the following form:

I¼

Z 1�c

�1�c

1

G2
cx1

2
fðx1þcÞGðx1þcÞdx1 ð30Þ
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Second we make a stretching transformation

x1 ¼ ð�1�cÞx2 ð31Þ

The integral of Eq. (30) can be written as

I¼

Z ð1�cÞ=�ð1þ cÞ

1

�ð1þcÞ

ð1þcÞ2x2
2
fð�ð1þcÞx2þcÞGð�ð1þcÞx2þcÞdx2

ð32Þ

Third we make a logarithmic transformation to smooth out the
rapid variations of the integrand

x3 ¼ logðx2Þ ð33Þ

Using Eq. (33), we have

I¼

Z log½ð1�cÞ=�ð1þ cÞ�

0

�ð1þcÞex3

ð1þcÞ2ðex3 Þ
2

�fð�ð1þcÞex3þcÞGð�ð1þcÞex3þcÞdx3 ð34Þ

Finally, also adjusting the interval of integration within [�1,1] for
performing the standard Gaussian quadrature directly, the fol-
lowing transformation is given:

x3 ¼ kðZþ1Þ, k¼ 0:5log
1�c

�1�c

� 	
ð35Þ

Substituting Eq. (35) into Eq. (34), we have

I¼

Z 1

�1

�ð1þcÞkekð1þZÞ

ð1þcÞ2ðekð1þZÞÞ2

�fð�ð1þcÞekð1þZÞ þcÞGð�ð1þcÞekð1þZÞ þcÞdZ ð36Þ

We integrate all steps above and the final transformation is
obtained as

x¼ cþð�1�cÞekð1þZÞ ð37Þ

Applying the transformation described by Eq. (37), the integral of
Eq. (2b) for this case can be expressed as follows:

I¼

Z �1

�1

ð�1�cÞkekð1þZÞ

r2

�fðcþð�1�cÞðekð1þZÞ�1ÞÞGðcþð�1�cÞðekð1þZÞ�1ÞÞdZ ð38Þ

For the case cZ1, after applying the similar processes we can
easily obtain another new transformation as follows:

x¼ c�ðc�1Þðekð1þZÞ�1Þ, k¼ 0:5logðð1þcÞ=ðc�1ÞÞ ð39Þ

Using Eq. (39), the integral of Eq. (2b) for this case can be
expressed as follows:

I¼

Z 1

�1

ðc�1Þkekð1þZÞ

r2

�fðc�ðc�1Þðekð1þZÞ�1ÞÞGðc�ðc�1Þðekð1þZÞ�1ÞÞdZ ð40Þ

5.3. Case 3: r0a0 and 9c9o1

If r0a0 and 9c9o1, we split the integration span into two
parts at point c, Eq. (2b) can be expressed with two parts as

I¼

Z 1

�1

f ðxÞ
r2

fðxÞGðxÞdx¼ I1þ I2 ð41Þ

in which

I1 ¼

Z 1

c

f ðxÞ
r2

fðxÞGðxÞdx ð42aÞ

I2 ¼

Z c

�1

f ðxÞ
r2

fðxÞGðxÞdx ð42bÞ

Employing the similar method detailed in the previous subsec-
tions, we can construct an efficient variable transformation for
each part.
For Eq. (42a), the following variable transformation is given:

x¼ cþr0ðe
kð1þZÞ�1Þ, k¼ 0:5log

1�c

r0
þ1

� 	
ð43Þ

Substituting Eq. (43) into Eq. (42a), yields

I1 ¼

Z 1

�1

r0kekð1þZÞf ðcþr0ðe
kð1þZÞ�1ÞÞ

r2

�fðcþr0ðe
kð1þZÞ�1ÞÞGðcþr0ðe

kð1þZÞ�1ÞÞdZ ð44Þ

For Eq. (42b), we can also obtain the following transformation:

x¼ c�r0ðe
kð1þZÞ�1Þ, k¼ 0:5log

1þc

r0
þ1

� 	
ð45Þ

Substituting Eq. (45) into Eq. (42b), results in

I2 ¼

Z 1

�1

r0kekð1þZÞf ½c�r0ðe
kð1þZÞ�1Þ�

r2

�fðc�r0ðe
kð1þZÞ�1ÞÞGðc�r0ðe

kð1þZÞ�1ÞÞdZ ð46Þ

Note that the two variable transformations are similar to Ref. [30].
However, the deductions in this paper are very different from
than those given in Ref. [30]. We construct the transformations in
a general way based on the approximate distance function
derived from first-order Taylor expansion. The effectiveness for
both transformations has also been verified by numerical exam-
ples in Ref. [30].
6. Numerical examples

In this section, we will give a number of examples to
investigate the effectiveness of different variable transformations.
For the purpose of error estimation, the relative error is defined as
follows:

error¼
Inume�Iexact

Iexact

����
���� ð47Þ

where the subscripts nume and exact refer to numerical solutions
and exact solutions, respectively.

6.1. Numerical examples of straight line elements

In this section, numerical examples of straight elements are
given to verify the effectiveness of the proposed transformations.
We use 10 Gaussian points in all cases for the convenience of
comparison.

Example 1.Z 1

�1

1

ðc�xÞ2
dx¼

1

c�1
�

1

cþ1
ð48Þ

This example considers the nearly singular integrals of the left
side of Eq. (48). The projection point is located outside the
integration interval and the minimum distance equals zero,
namely r0¼0 and 9c9Z1. The relative distance describing the
closeness of the source point to the boundary is defined as

ratio¼
c�1

2

����
���� ð49Þ

The integrals of the left side of Eq. (48) are computed considering
the different values of c. c changes from 1.1 to 1.000001. The
solutions of our method are obtained with the transformation of
Eq. (39). And exact solutions are obtained by the right side of
Eq. (48). We will compare our method with Telles’ method [20].
The results and the relative errors are listed in Tables 1 and 2.



Table 1
Comparisons of numerical results between our method and Telles’ method (r0¼0 and 9c9Z1).

Ratio Exact solution Our method Telles’ second degree method Telles’ third degree method

0.5e�01 9.523809523809520 9.523809523809502 9.52380592265220 9.5238095094771040

0.5e�02 99.50248756218906 99.50248756218880 99.2822207439216 99.500172446645564

0.5e�03 999.5002498750624 999.5002498751232 885.260216571448 995.33053859668246

0.5e�04 9999.500024998750 9999.500024956229 4336.74536591694 9234.9679996985451

0.5e�05 99999.50000184488 99999.49998902746 9628.00429700836 63785.179740187421

0.5e�06 999999.5000825167 999999.4982712528 13101.0132970434 264763.92332233913

Table 2
Comparisons of relative errors between our method and Telles’ method (r0¼0

and 9c9Z1).

Ratio Errors of our

method

Errors of Telles’ second

degree method

Errors of Telles’ third

degree method

0.5e�01 1.8652e�15 3.7812e�07 1.5049e�09

0.5e�02 2.5707e�15 2.2136e�03 2.3267e�05

0.5e�03 6.0853e�14 0.114297153320266 4.1718e�03

0.5e�04 4.2523e�12 Wrong 7.6457e�02

0.5e�05 1.2817e�10 Wrong Wrong

0.5e�06 1.8000e�09 Wrong Wrong
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Another example has been presented in [20] as

I¼

Z 1

�1

1

ð1:004�xÞ2
dx¼ 249:500998003992

The application of Telles’ second degree method to the above
integral gives I¼245.59074481306968 (an error of 1.6 percent)
and the application of Telles’ third degree method gives
I¼249.43489486343037(an error of 0.026 percent). Using our
transformation of Eq. (39) to the same integral gives
I¼249.50099800399101 (an error of 4.0e�15, more accurate
than Telles’ method).

From Tables 1 and 2 and the example above, it should be noted
that Telles’ method is stable and accurate when ratio 40.5e�04,
especially Telles’ third degree method. But when ratio o0.5e�04,
Telles’ method fails. Compared with Telles’ method, our method is
more accurate and stable in all cases. It is clearly found that the
results with our method are very accurate with the relative errors
less than 10–8 even ratio set to 0.5e�06.

It is also pointed out that this case appears in many BEM
models such as employing discontinuous linear elements. This
example has shown our method can deal with integrals of this
type accurately and efficiently.

Example 2.Z 1

�1

1

ðc�xÞ2þr0
2

dx¼
1

r0
arctan

1�c

r0

� 	
�

1

r0
arctan

�1�c

r0

� 	
ð50Þ

In this example, the coordinate c of the projection point is outside
the integration interval and the minimum distance is not equal to
zero, namely r0a0 and 9c9Z1. The relative distance describing
the closeness of the source point to the boundary is defined as

ratio¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc�1Þ2þr2

0

q
2

������
������ 51Þ

r0 changes from 0.1 to 0.000001 by the order 10�1 and c changes
from 1.1 to 1.000001. Using our transformation (25), the integrals
can easily be computed by the standard Gaussian quadrature. The
solutions with our method are obtained with the transformation
of Eq. (25). And exact solutions are obtained by the right side
of Eq. (50). We will also compare this example with Telles’
method [20]. The results are listed in Table 3 and the relative
errors are listed in Table 4.

From Tables 3 and 4, it is found that the largest error of our
method is less than 0.08 percent even ratio set to 0.714e�06. It
should be noted that Telles’ method is stable and accurate when
ratio 40.714e�04, especially Telles’ third degree method. How-
ever, when ratio o0.714e�04, Telles’ method fails. Compared
with Telles’ method, our method is more accurate and stable for
all cases. It should be noted that these integrals cannot be
calculated accurately with the traditional distance transformation
technique directly, while very accurate results have been
obtained with our transformation easily.

6.2. Numerical examples of curved elements

In this section, numerical examples on curved elements are
presented to verify the effectiveness of the proposed transforma-
tions. We use 20 Gaussian points in all cases for the convenience
of comparison. Numerical examples are computed over a quad-
ratic boundary element with the nodal coordinates (0,0.5), (1,1),
(2,1). We consider the integrals with near hyper singularity (q�k) as
follows:

qi
1 ¼

Z
1

r2
2r1

@r

@n
�n1

� 	
fi dG, i¼ 1,2,3 ð52Þ

where n represents the unit normal; x is the field point and y is
the source point, r1¼x1�y1, r2¼x2�y2, qr/qn¼(r1n1+r2n2)/r; fi is
one of the shape functions.

Example 3.

qi
1 ¼

Z
1

r2
2r1

@r

@n
�n1

� 	
fi dG, i¼ 1,2,3

In this example we consider the positions of the projection point
for two cases. The relative distance describing the closeness of the
nearly singular point to the boundary is defined as

ratio¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1�2Þ2þðy2�1Þ2

q
l

ð53Þ

where l is the length of the curved element, and (y1, y2) is the
source point. And exact solutions are obtained by adaptive
subdivision method [21–23]. We divide the curved element into
many sub-elements, and for each sub-element, 10 Gaussian
points are used. But for our method, only 20 Gaussian points
are employed on the whole element.

For the first case, the coordinate c of the projection point is
outside the integration interval and the minimum distance is not
equal to zero, namely r0a0 and 9c9Z1. r0 changes from 0.1 to
0.000001 by the order 10�1 and c changes from 1.2 to 1.000002.
And the source point (y1, y2) moves along the normal line yn
through the projection point c. While accurate computation of
those integrals cannot be performed by the distance transforma-
tion technique directly, the near singularity separation and the
cumbersome formula deductions are still required. Using our
transformation (25), the integrals can easily be computed by the



Table 3
Comparisons of numerical results between our method and Telles’ method (r0a0 and 9c9Z1).

Ratio Exact solution Our method Telles’ second degree method Telles’ third degree method

0.714e�01 7.37815060120465 7.3781506112580630 7.3781541301331668 7.3781504305069827

0.714e�02 78.04230800665944 78.042295418995295 78.134460267067169 78.032054798911048

0.714e�03 784.8984133141152 784.87437917911507 778.58781833389685 789.14904182114219

0.714e�04 7853.481658973651 7852.8638064086572 4273.6432633693794 8047.1885742484974

0.714e�05 78539.31634191728 78546.524751965859 9623.6783375383566 61722.1402401590970

0.714e�06 785397.6634388316 785988.371264560730 13100.923425304798 263978.995513185100

Table 4
Comparisons of relative errors between our method and Telles’ method (r0a0 and 9c9Z1).

Ratio Errors of our method Errors of Telles’ second degree method Errors of Telles’ third degree method

0.714e�01 1.3626e�09 4.7829e�07 2.3136e�08

0.714e�02 1.6129e�07 1.18086e�03 1.3138e�04

0.714e�03 3.0621e�05 8. 0400e�03 5.4155e�03

0.714e�04 7.8672e�05 0.455828198377955476 2.4665e�02

0.714e�05 9.1781e�05 Wrong �0.214124299587042

0.714e�06 7.5211e�04 Wrong Wrong

Table 5

Comparisons of relative errors between our method and Ma’s method (fi¼f1, r0a0 and 9c9Z1).

Ratio 6.14e�02 7.29e�03 7.42e�04 7.44e�05 7.44e�06 7.44e�07

Exact solution �0.3287745755301 �0.296079663522 �0.1457373223479 0.0338550865416 0.2174935543268 0.4016330570280

Errors

Our method 7.100e�9 8.603e�7 4.660e�5 1.700e�3 1.700e�3 2.619e�5

Ma’s 1.658e�8 2.821e�5 1.300e�3 8.86e�2 1.52e�2 1.84e�2

Table 6

Relative errors of our method and Ma’s method (fi¼f2, r0a0 and 9c9Z1).

Ratio 6.14e�02 7.29e�03 7.42e�04 7.44e�05 7.44e�06 7.44e�07

Exact solution 0.145981897672 0.291858543852 0.891701987414 1.610305220541 2.344926996697 3.081496270124

Errors

Our method 6.219e�8 3.599e�6 1.8274e�5 1.606e�4 2.524e�04 3.894e�4

Ma’s 3.789e�7 1.052e�4 6.5017e�4 3.900e�3 2.900e�3 1.33e�2

Table 7

Relative errors of our method and the standard Gaussian quadrature (fi¼f1, r0¼0 and 9c9Z1).

Ratio 1.26e�01 1.18e�02 1.17e�03 1.17e�04 1.17e�05 1.17e�06

Exact solution �0.354376509579 �0.34718 586787 �0.207607028191 �0.031156631298 0.151936187522 0.336003048354

Errors

Our method 4.416e�9 1.165e�6 6.260e�5 3.400e�3 1.800e�3 1.700e�3

Gau-quad 1.304e�7 6.300e�3 3.900e�2 Wrong Wrong Wrong
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standard Gaussian quadrature. The solutions with our method are
obtained with the transformation of Eq. (25). We compare our
new method with Ma’s method [24–27]. The relative errors are
listed in Tables 5 and 6. In this example we only compute
integrals of Eq. (52) when i¼1, 2.

From Tables 5 and 6, it is found that the largest error of our
method is less than 0.04 percent even the ratio set to 7.44e�07.
Compared with Ma’s method, it should be noted that while Ma’s
method is accurate and stable even when the ratio is very small,
the near singularity separation and the cumbersome formula
deductions cannot be avoided. Using our method, the integrals
can be computed directly additional transformation. Moreover,
our method is more accurate and stable.

For the second case, we consider the projection point is located
outside the integration interval and the minimum distance equals
zero, namely r0¼0 and 9c9Z1. We assume that c changes from 1.2 to
1.000002 by the order 10�1. The results are obtained with our
method and the standard Gaussian quadrature, respectively. For all
cases, 20 Gaussian points is used on the whole element. Relative
errors are listed in Tables 7 and 8. The symbol Gau-quad denotes the
results obtained with the standard Gaussian quadrature.

Since the distance between the source point and (2,1) is very
small compared with the length of the integration element, the
integrals become nearly hypersingular. The solutions of our
method are obtained with the transformation of Eq. (39). We will
compare the results of our new transformation with the exact
solutions. The relative errors are listed in Tables 7 and 8. We also
consider i¼1,2, respectively.

From Tables 7 and 8, it is found that when ratioo1.18e�02,
the standard Gaussian quadrature fails.



Table 8

Relative errors of our method and the standard Gaussian quadrature (fi¼f2, r0¼0 and 9c9Z1).

Ratio 1.26e�01 1.18e�02 1.17e�03 1.17e�04 1.17e�05 1.17e�06

Exact solution �0.21702373784 0.052052048880 0.639835580787 1.349724798153 2.082634448863 2.818968950858

Errors

Our method 8.953e�16 5.967e�6 1.817e�5 2.229e�04 4.477e�05 1.000e�3

Gau-quad 7.773e�7 16.71e�2 Wrong Wrong Wrong Wrong
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But our method is more accurate and stable even ratio set to
1.17e�06. The largest error of our method is less than 0.2 percent
for all cases.
7. Conclusion

Several new variable transformations are presented in this
paper for accurate computation of nearly singular integrals
arising in 2D BEM. The goal of developing those transformations
is to overcome the drawbacks of the traditional distance trans-
formation technique.

The new variable transformations are based on the distance
function and each for different cases in terms of the minimum
distance and the positions of the projection point. These trans-
formations are finally unified into a uniform formulation, which
can deal with the nearly hypersingular integral directly, and thus
the near singularity separation and cumbersome formula deduc-
tions in traditional methods are avoided.

The accuracy and efficiency of the method is verified by a
number of numerical examples and compared with the existing
methods. It has been found that our method is more stable and
accurate. The relative errors of our new transformations can be
kept within 10-3 up till ratio¼10-6. Moreover, our method has
been applied in the evaluation of nearly singular integrals on
straight line elements and curved elements as a general algo-
rithm. Extension of our method to 3D BEM is an ongoing work.
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